Pre_GI: SWBIT SVG BLASTN

Query: NC_006958:828089 Corynebacterium glutamicum ATCC 13032, complete genome

Lineage: Corynebacterium glutamicum; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Causes bovine brucellosis. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is a well-studied soil bacterium of considerable importance in biotechnology, in particular for the fermentative production of L-amino acids for food and fodder industry. The name was originaly given for this species for its ability to produce significant quantities (>100 g per liter) of glutamic acid (glutamate), an important food enhancer that has a meaty taste and flavor. Currently used commercially to produce glutamate and other amino acids (L-lysine) and compounds. The first strain of the species was isolated in 1957 by S. Kinoshita and colleagues while searching for an efficient glutamate-producer.

No Graph yet!

Subject: NC_008525:664500 Pediococcus pentosaceus ATCC 25745, complete genome

Lineage: Pediococcus pentosaceus; Pediococcus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: Use in fermentation of food products. A distinctive characteristic of pediococci is their ability to form tetrads via cell division in two perpendicular directions in a single plane. Like other lactic acid bacteria, species of Pediococcus are acid tolerant, cannot synthesize porphyrins, and possess a strictly fermentative (homofermentative) facultatively anaerobic metabolism with lactic acid as the major metabolic end product. They also occur in such food products as cured meat, raw sausages, and marinated fish, and are are used for biotechnological processing and preservation of foods. This bacterium can be isolated from a variety of plant materials and bacterial-ripened cheeses. This organism is used as an acid producing starter culture in the fermentation of some sausages, cucumbers, green beans, soy milk, and silage. Some strains have been reported to contain several (3-5) resident plasmids that render the bacterium capable of fermenting some sugars (raffinose, melibiose, and sucrose), as well as producing bacteriocins.