Pre_GI: SWBIT SVG BLASTN

Query: NC_006905:2805877 Salmonella enterica subsp. enterica serovar Choleraesuis str

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated from a 58-year old man with sepsis and has been shown to be resistant to ciprofloxacin and ceftriaxone. This organism also causes severe disease (swine paratyphoid) in pigs. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007406:632436 Nitrobacter winogradskyi Nb-255, complete genome

Lineage: Nitrobacter winogradskyi; Nitrobacter; Bradyrhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Nitrite-oxidizing bacterium. Members of this genus are found in marine, freshwater, and terrestrial habitats, often in association with ammonia-oxidizing bacteria. These organisms oxidize nitrate, generated by the oxidation of ammonia, to nitrate and play an important role in the global nitrogen cycle. The enzyme involved in nitrite oxidation, nitrite oxidoreductase, can also reduce nitrate to nitrite in the absence of oxygen, allowing Nitrobacter sp. to grow anaerobically. Nitrobacter winogradskyi is commonly isolated from soil, fresh and sea water, sewage, and compost. This organism can grow anaerobically using nitrate as the electron acceptor, forming nitrite, nitric oxide, and nitrous oxide.