Pre_GI: SWBIT SVG BLASTN

Query: NC_006814:1618588 Lactobacillus acidophilus NCFM, complete genome

Lineage: Lactobacillus acidophilus; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This organism is a normal inhabitant of the human intestinal tract. This strain was isolated from a human in 1970. Normal gastrointestinal bacterium. They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, and other products such as fermented milks, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully cultivated, created, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses. This organism has been studied for its ability to help the human gut maintain its natural microbial community. Strains of this organism are also used in the production of yogurt, cheese and other fermented foods.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_013890:808791 Dehalococcoides sp. GT chromosome, complete genome

Lineage: Dehalococcoides mccartyi; Dehalococcoides; Dehalococcoidaceae; Dehalococcoidales; Chloroflexi; Bacteria

General Information: Temp: Mesophile; Habitat: Fresh water, Groundwater. Dehalococcoides sp. GT was isolated from an chloroethene-contaminated aquifer. This strain can dechlorinate trichloroethene and vinyl chloride. This organism was isolated from environments contaminated with organic chlorinated chemicals such as tetrachloroethene (PCE) and trichloroethane (TCE), common contaminants in the anaerobic subsurface. There are at least 15 organisms from different metabolic groups, halorespirators, acetogens, methanogens and facultative anaerobes, that are able to metabolize PCE. Some of these organisms couple dehalogenation to energy conservation and utilize PCE as the only source of energy while others dehalogenate tetrachloroethene fortuitously. This non-methanogenic, non-acetogenic culture is able to grow with hydrogen as the electron donor, indicating that hydrogen/PCE serves as an electron donor/acceptor for energy conservation and growth. This organism can only grow anaerobically in the presence of hydrogen as an electron donor and chlorinated compounds as electron acceptors. Dehalococcoides ethenogenes is typically found at sites contaminated with chlorinated solvents, and have been independently isolated in dozens of sites across the USA.