Pre_GI: SWBIT SVG BLASTN

Query: NC_006677:1596560 Gluconobacter oxydans 621H, complete genome

Lineage: Gluconobacter oxydans; Gluconobacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Industrially useful bacterium. Gluconobacter oxydans is a member of the Acetobacteraceae family within the alpha proteobacteria and can be isolated from flowers, fruits, and fermented beverages. This organism uses membrane-associated dehydrogenases to incompletely oxidize a wide variety of carbohydrates and alcohols. Oxidation occurs in the periplasm with the products being released into the medium via outer membrane porins and the electrons entering the electron transport chain. Able to oxidize large amounts of substrates, making it useful for industrial purposes. Among other applications, it has been used to produce 2-ketogluconic for iso-ascorbic acid production, 5-ketogluconic acid from glucose for tartaric acid production, and L-sorbose from sorbitol for vitamin C synthesis.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007952:1293024 Burkholderia xenovorans LB400 chromosome 2, complete sequence

Lineage: Burkholderia xenovorans; Burkholderia; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Originally identified as Pseudomonas sp. LB400 that was found in contaminated soil in upstate New York, USA, this organism is now classified in the genus Burkholderia. Polychlorinated biphenyl-degrading bacterium. Member of the genus Burkholderia are versatile organisms that occupy a surprisingly wide range of ecological niches. These bacteria are exploited for biocontrol, bioremediation, and plant growth promotion purposes. Burkholderia xenovorans has been found on fungi, animals, and from human clinical isolates such as from cystic fibrosis (CF) patients. It may be tightly associated with white-rot fungus, as the degadation of lignin by the fungus results in aromatic compounds the bacterium can then degrade. This organism is exceptionally capable of degradation of polychlorinated biphenyls (PCBs), which are environmental pollutants, and thus it may play a role in bioremediation of polluted and toxic sites and is studied as a model bioremediator. PCBs can be utilized as the sole carbon and energy source by this organism. The pathways for degradation of PCBs have been extensively characterized at both the genetic and the molecular level and have become a model system for the bacterial breakdown of these very persistent environmental contaminants.