Pre_GI: SWBIT SVG BLASTN

Query: NC_006576:1435422 Synechococcus elongatus PCC 6301, complete genome

Lineage: Synechococcus elongatus; Synechococcus; Synechococcaceae; Chroococcales; Cyanobacteria; Bacteria

General Information: Freshwater organism. These unicellular cyanobacteria are also known as blue green algae and along with Prochlorococcus are responsible for a large part of the carbon fixation that occurs in marine environments. Synechococcus have a broader distribution in the ocean and are less abundant in oligotrophic (low nutrient) regions. These organism utilize photosystem I and II to capture light energy. They are highly adapted to marine environments and some strains have evolved unique motility systems in order to propel themselves towards areas that contain nitrogenous compounds. An obligate photoautotroph, it has been studied extensively by an international research community with respect to acquisition of organic carbon, transport and regulation of nitrogen compounds, adaptation to nutrient stresses, and reponse to light intensity.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014323:3669704 Herbaspirillum seropedicae SmR1 chromosome, complete genome

Lineage: Herbaspirillum seropedicae; Herbaspirillum; Oxalobacteraceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Root-associated nitrogen-fixing bacterium. Herbaspirillum seropedicae is an endophitic nitrogen-fixing beta-Proteobacteria found associated with important crops such as sugarcane, wheat, maize, rice and sorghum. It is non-phytopathogenic and produces interesting biotechnological products such as polybetaalkanoates and cyanophycin. Herbaspirillum seropedicae was isolated from the roots of rice plants, and is member of a group of free-living soil bacteria known to promote plant growth. The yields of rice and sorghum were significantly increased when grown in soil inoculated with Herbaspirillum seropedicae.