Pre_GI: SWBIT SVG BLASTN

Query: NC_006511:4225455 Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This serovar has a narrow host range and causes a typhoid-like (paratyphoid fever) illness in humans. It is especially prevalent in southern and eastern Asia, and has been associated with some particularly virulent outbreaks. A number of isolates are increasingly antibiotic resistant. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004757:2657490 Nitrosomonas europaea ATCC 19718, complete genome

Lineage: Nitrosomonas europaea; Nitrosomonas; Nitrosomonadaceae; Nitrosomonadales; Proteobacteria; Bacteria

General Information: Ammonia-oxidizing bacterium. This organism is an obligate chemo-lithoautotroph as it only uses ammonia and carbon dioxide and mineral salts for growth, and is an important part of the global biogeochemical nitrogen cycle. It can derive all energy requirements from the oxidation of ammonia to nitrate, driving global nitrogen from the reduced insoluble form to the oxidized and potentially gaseous form (including NO and NO2 which are greenhouse gases). The energy derived from ammonia oxidation is in turn used to drive carbon fixation. This bacterium also provides plants with a readily available form of nitrogen, is important in wastewater treatment, and may be involved in bioremediation of sites contaminated with toxic compounds.