Pre_GI: SWBIT SVG BLASTN

Query: NC_006322:4149500 Bacillus licheniformis ATCC 14580, complete genome

Lineage: Bacillus licheniformis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Industrially important bacterium. Under starvation conditions this group of bacteria initiate a pathway that leads to endospore formation, a process that is thoroughly studied and is a model system for prokaryotic development and differentiation. Spores are highly resistant to heat, cold, dessication, radiation, and disinfectants, and enable the organism to persist in otherwise inhospitable environments. Under more inviting conditions the spores germinate to produce vegetative cells. This organism is a soil-dwelling endospore-forming microbe similar to other Bacilli. This bacterium is used extensively in the industrial production of important enzymes such as proteases, penicllinases, and amylases as well as smaller compounds like the antibiotic bacitracin and various organic metabolites. This organism is closely related to Bacillus subtilis on the basis of rRNA typing, and it has been found to occasionally cause illness in humans.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011901:3072817 Thioalkalivibrio sulfidophilus HL-EbGr7 chromosome, complete

Lineage: Thioalkalivibrio sulfidophilus; Thioalkalivibrio; Ectothiorhodospiraceae; Chromatiales; Proteobacteria; Bacteria

General Information: Obligately chemolithoautotrophic, haloalkaliphilic, mesophilic, microaerophilic and sulfur-oxidizing bacterium. Uses CO2 as a carbon source and reduced inorganic sulfur compounds as an energy source. Utilizes ammonium and urea, but not nitrate or nitrite, as a N-source. Isolated from a full-scale Thiopaq bioreactor in the Netherlands used to remove H2S from biogas. Thioalkalivibrio species are commonly isolated from soda lakes and tend to dominate the microbial community of hypersaline soda lakes. These organisms have a pH optimum of 10 and are able to oxidize hydrogen sulfide to elemental sulfur. Thioalkalivibrio species have also been isolated from sulfide oxidizing bioreactors which remove sulfide from refinery and natural gas.