Pre_GI: SWBIT SVG BLASTN

Query: NC_006270:568171 Bacillus licheniformis ATCC 14580, complete genome

Lineage: Bacillus licheniformis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Industrially important bacterium. Under starvation conditions this group of bacteria initiate a pathway that leads to endospore formation, a process that is thoroughly studied and is a model system for prokaryotic development and differentiation. Spores are highly resistant to heat, cold, dessication, radiation, and disinfectants, and enable the organism to persist in otherwise inhospitable environments. Under more inviting conditions the spores germinate to produce vegetative cells. This organism is a soil-dwelling endospore-forming microbe similar to other Bacilli. This bacterium is used extensively in the industrial production of important enzymes such as proteases, penicllinases, and amylases as well as smaller compounds like the antibiotic bacitracin and various organic metabolites. This organism is closely related to Bacillus subtilis on the basis of rRNA typing, and it has been found to occasionally cause illness in humans.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012563:4101000 Clostridium botulinum A2 str. Kyoto, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated from a case of infant botulism in Kyoto, Japan in 1978. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin.Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium. Honey is the most common vehicle for infection in infants. Food poisoning through C. botulinum is the most frequent type of infection caused by this bacterium. The wound botulism that occurs when C. botulinum infects an individual via an open wound is much rarer and is very similar to tetanus disease. There are several types of botulinum toxin known (type A through type F), all of them being neurotoxic polypeptides. The most common and widely distributed are strains and serovars of C. botulinum that produce type A toxin.