Pre_GI: SWBIT SVG BLASTN

Query: NC_006177:3192500 Symbiobacterium thermophilum IAM 14863, complete genome

Lineage: Symbiobacterium thermophilum; Symbiobacterium; Shewanellaceae; Clostridiales; Firmicutes; Bacteria

General Information: This symbiotic and thermophilic bacterium was discovered by screening for thermostable tryptanophases in Japanese compost. Cultured growth of this organism requires the presence of another bacterial species, such as a Bacillus or Escherichia coli, which provides diffusable metabolites required for its growth. Pure cultures can be obtained by growing Symbiobacterium thermophilum in a bioreactor, separated from its symbiotic counterpart by a dialysis membrane. Because of its symbiotic nature, it cannot be cultured with conventional methods. Despite a negative reaction for gram stain, this species is placed with the gram-positive bacteria based on 16s phylogenetic analysis.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007492:1735595 Pseudomonas fluorescens PfO-1, complete genome

Lineage: Pseudomonas fluorescens; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from agricultural loam (sand, clay, and organic matter) soil in 1988 by Compeau et al. and is well adapted to soil environments. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is a nonpathogenic saprophyte which inhabits soil, water and plant surface environments. If iron is in low supply, it produces a soluble, greenish fluorescent pigment, which is how it was named. As these environmentally versatile bacteria possess the ability to degrade (at least partially) multiple different pollutants, they are studied in their use as bioremediants.