Pre_GI: SWBIT SVG BLASTN

Query: NC_006155:2334122 Yersinia pseudotuberculosis IP 32953, complete genome

Lineage: Yersinia pseudotuberculosis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is a fully virulent serotype I strain isolated from a human patient. Environmental bacterium that causes gastrointestinal disease. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. This organism was first isolated in 1883 by Malassez and Vignal and is termed pseudotuberculosis since it causes lesions in the lung that are similar to those observed during tuberculosis infection. It is ubiquitous in the environment and is a food and waterborne pathogen that affects animals as well as humans by causing gastroenteritis like Yersinia enterocolitica.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010645:558974 Bordetella avium 197N, complete genome

Lineage: Bordetella avium; Bordetella; Alcaligenaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain is a spontaneous nalidixic acid-resistant derivative of virulent strain 197. This group of organisms is capable of invading the respiratory tract of animals and causing severe diseases. They express a number of virulence factors in order to do this including filamentous hemagglutins for attachment, cytotoxins, and proteins that form a type III secretion system for transport of effector molecules into host cells. This organism infects the respiratory tract of birds, and causes bordetellosis in commercially important animals such as turkeys, resulting in devastating losses every year due to secondary infections.