Pre_GI: SWBIT SVG BLASTN

Query: NC_006142:140853 Rickettsia typhi str. Wilmington, complete genome

Lineage: Rickettsia typhi; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, is composed of obligate intracellular pathogens. The latter is composed of two organisms, Rickettsia prowazekii and Rickettsia typhi. The bacteria are transmitted via an insect, usually a tick, to a host organism, in this case humans, where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Transovarial transmission (from mother to offspring) occurs in the invertebrate host. Rickettsia typhi causes murine typhus and is an obligate intracellular pathogen that infects both the flea vector and hosts such as human, rat, and mouse. In the flea vector, the bacterium penetrates the gut epithelial barrier and is found in the feces which become infective.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009465:171000 Candidatus Vesicomyosocius okutanii HA, complete genome

Lineage: Calyptogena okutanii thioautotrophic gill symbiont; sulfur-oxidizing symbionts; ; sulfur-oxidizing symbionts; Proteobacteria; Bacteria

General Information: This strain was collected off Hatsushima island in Sagami Bay, Japan. Calyptogena okutanii (deep-sea clam) thioautotrophic gill symbiont. The bivalve marine species Calyptogena okutanii depends on sulfur-oxidizing symbiotic bacteria housed in its gill tissues for its sole nutritional support. The symbiont is transmitted vertically between generations via the clam's eggs. This anaerobic symbiosis oxidizes hydrogen sulfide as an energy source and fixes carbon dioxide into organic compounds.