Pre_GI: SWBIT SVG BLASTN

Query: NC_006138:23902 Desulfotalea psychrophila LSv54, complete genome

Lineage: Desulfotalea psychrophila; Desulfotalea; Desulfobulbaceae; Desulfobacterales; Proteobacteria; Bacteria

General Information: This organism was isolated from marine sediments off of the coast of Svalbard, and can grow at temperatures as low as -1.7 degrees C. Sulfate-reducing bacterium. This organism grows on more complex organic compounds such as acetate, propionate, butyrate, lactate as well as by using simpler compounds such as hydrogen. This organism is an important part of global biogeochemical cycling of carbon and other nutrients.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010067:807129 Salmonella enterica subsp. arizonae serovar 62:z4,z23:--, complete

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This subspecies (IIIa) is usually found associated with reptiles, although contact with infected animals can result in the spread of the organism to humans or animals such as turkeys. This strain was originally isolated from a cornsnake in 1986 in Oregon, USA. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.