Query: NC_006086:1329915 Streptococcus pyogenes MGAS10394, complete genome Lineage: Streptococcus pyogenes; Streptococcus; Streptococcaceae; Lactobacillales; Firmicutes; Bacteria General Information: This strain is a serotype M6 isolate cultured from a child with pharyngitis in private elementary school in Pennsilvania, USA. Causes tonsilitis. Streptococci are Gram-positive, nonmotile, nonsporeforming, catalase-negative cocci that occur in pairs or chains. Members of this genus vary widely in pathogenic potential. Most streptococci are facultative anaerobes, and some are obligate anaerobes. Serologic grouping is based on antigenic differences in cell wall carbohydrates, in cell wall pili-associated protein, and in the polysaccharide capsule in group B streptococci. This organism is a member of the normal human nasopharyngeal flora. Streptococcus pyogenes is a group A streptococcus and is the leading cause of uncomplicated bacterial pharyngitis and tonsillitis. This organism is commonly referred to by the lay press as "flesh eating bacteria".
- Sequence; - BLASTN hit (Low score = Light, High score = Dark) - hypothetical protein; - cds: hover for description
General Information: Environment: Soil; Isolation: Coal-cleaning residues; Temp: Mesophile; Temp: 30C. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. Clostridium pasteurianum was first isolated from soil by the Russian microbiologist Sergey Winogradsky. This organism is able to fix nitrogen and oxidize hydrogen into protons. The genes involved in nitrogen fixation and hydrogen oxidation have been extensively studied in this organism.