Pre_GI: SWBIT SVG BLASTN

Query: NC_006085:854500 Propionibacterium acnes KPA171202, complete genome

Lineage: Propionibacterium acnes; Propionibacterium; Propionibacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Isolated from human skin. Acne causing bacterium. This bacterium is the most common gram-positive, non-spore forming, anaerobic rod encountered in clinical specimens. The causative agent of acne, it typically grows as an obligate anaerobe. Some strains are aerotolerant, but still show better growth as an anaerobe. It has the ability to produce propionic acid, as its name suggests. It also has the ability to produce catalase along with indole, nitrate, or both indole and nitrate. Propionibacterium resembles Corynebacterium in morphology and arrangement, but is non-toxigenic.It is a common resident of the pilosebaceous (hair follicle) glands of the human skin. The bacteria release lipases to digest a surplus of the skin oil, sebum, that has been produced. The combination of digestive products (fatty acids) and bacterial antigens stimulates an intense local inflammation that bursts the hair follicle. Since acne is caused in part from an infection, it can be suppressed with topical and oral antibiotics such as clindamycin, erythromycin, or tetracycline. Some other forms of therapy include chemicals that enhance skin removal or slow the production of sebum.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014836:2848000 Desulfurispirillum indicum S5 chromosome, complete genome

Lineage: Desulfurispirillum indicum; Desulfurispirillum; Chrysiogenaceae; Chrysiogenales; Chrysiogenetes; Bacteria

General Information: Environment: Fresh water; Temp: Mesophile. This is the first cultured species of the proposed new genus "Desulfurispirillum", and the sequencing of its genome will expand the range of experimental approaches that researchers can use to characterize its metabolic pathways for energy production and understand how these pathways are regulated. This organism is notable for its ability to reduce selenate to selenite and further to insoluble elemental selenium, in a process called dissimilatory selenate reduction.