Pre_GI: SWBIT SVG BLASTN

Query: NC_005956:1402500 Bartonella henselae str. Houston-1, complete genome

Lineage: Bartonella henselae; Bartonella; Bartonellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Bartonella henselae str. Houston-1 (ATCC 49882) was isolated from human blood in Houston Texas. Causative agent of cat scratch fever. This group of alpha proteobacteria are unique among pathogens in that they cause angiogenic lesions. This organism was identified as the causative agent of cat scratch fever, a disease found commonly in children or in immunocompromised adults. The proliferation of the vascular endothelium (bacillary angiomatosis) is characterisitic of Bartonella infection and results in multiplication of the bacterium's host cells. Infected macrophages are stimulated to release vascular endothelial growth factor (VEGF) and interleukin 1 beta, both of which promote angiogenesis. Endothelial cells are also stimulated to grow and divide by direct contact with bacterial cells. In addition, programmed cell death (apoptosis) of endothelial cells is inhibited, combatting a common mechanism eukaryotic cells use to deal with bacterial infection. Other pathogenicity factors include pili and outer membrane adhesins for attachment to host cells.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012815:1465670 Bifidobacterium animalis subsp. lactis DSM 10140, complete genome

Lineage: Bifidobacterium animalis; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: Bifidobacterium animalis subsp. lactis (strain DSM 10140 / JCM 10602 / LMG 18314) is an anaerobic Gram-positive lactic acid bacterium commonly found in the guts of healthy humans and has been identified in the infant gut biota, particularly in ileal, fecal, and mucosal samples. Some strains of B. animalis subsp. lactis are able to survive in the GIT, to adhere to human epithelial cells in vitro, to modify fecal flora, to modulate the host immune response, or to prevent microbial gastroenteritis and colitis.