Pre_GI: SWBIT SVG BLASTN

Query: NC_005823:1105524 Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130

Lineage: Leptospira interrogans; Leptospira; Leptospiraceae; Spirochaetales; Spirochaetes; Bacteria

General Information: This strain was isolated from a patient with severe leptospirosis during an epidemic in 1996. This organism is the causative agent of leptospirosis, a tropical zoonosis transmitted by direct contact with the urine of infected animals. This motile and obligately aerobic organism grows optimally at 28-30 C. Many serovars are adapted for specific mammalian reservoir hosts, which harbor the organisms in their renal tubules and shed them in their urine. Because of the large spectrum of animal species that serve as reservoirs, leptospirosis is considered to be the world's most widespread zoonotic disease.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004344:129798 Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis,

Lineage: Wigglesworthia glossinidia; Wigglesworthia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis. As Wigglesworthia brevipalpis resides intracellularly, the resulting co-evolution with its host over millions of years has led to a drastic reduction in the bacterium's genome size, resulting in this its inability to survive outside the host. Tsetse fly endosymbiont. This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis, Glossina tachinoides, Glossina palpalis palpalis, and Glossina austeni. The tsetse fly is a vector for African trypanosomes, and is the main transmitter of deadly diseases in animals and humans in Africa. The fly feeds on a restricted diet, exclusively consisting of vertebrate blood, and lacks certain metabolic compounds needed for survival and reproduction. To complement this lack in nutrients, the tsetse fly relies mainly on the intracellular bacterial symbiont, Wigglesworthia glossinidia for its viability and fecundity.