Pre_GI: SWBIT SVG BLASTN

Query: NC_005810:1130251 Yersinia pestis biovar Microtus str. 91001, complete genome

Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Causative agent of plague. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. It is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host. Yersinia pestis consists of three biotypes or serovars, Antiqua, Mediavalis, and Orientalis, that are associated with three major pandemics throughout human history. pMT1 encodes a protein, murine toxin, that aids rat-to-human transmission by enhancing survival of the organism in the flea midgut. Yersinia pestis also contains a PAI on the chromosome that is similar to the SPI-2 PAI from Salmonella that allows intracellular survival in the organism.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009792:3665369 Citrobacter koseri ATCC BAA-895, complete genome

Lineage: Citrobacter koseri; Citrobacter; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Citrobacter koseri ATCC BAA-895 is a clinical isolate from a human infant. Causative agent of neonatal meningitis. Citrobacter koseri, previously known as Citrobacter diversus, Levinea diversus or Levinea malonatica resides in a wide range of environments, including soil, water and food products. It is an occasional inhabitant of human and animal intestines, but is mainly characterized as being a causative agent of neonatal meningitis with an extreme high rate of multiple brain abscess initiations and a concomitant high moratility rate. The bacteria are used in neonatal rat models to study the mechanism of blood-brain barrier penetration, host immune response evasion and its resistance to phagocytotic killing.