Pre_GI: SWBIT SVG BLASTN

Query: NC_004917:946550 Helicobacter hepaticus ATCC 51449, complete genome

Lineage: Helicobacter hepaticus; Helicobacter; Helicobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: This organism was found to be linked to an increasing incidence of liver tumors in mouse colonies at the National Cancer Institute in 1992. Normally it resides in the lower intestines, but it can cause chronic hepatitis. This organism has a similar urease gene cluster and cytolethal distending toxin as compared to Helicobacter pylori, but lacks other virulence factors such as the vacuolating cytotoxin and the cag pathogenicity island. However, it does contain a pathogenicity island that encodes proteins similar to those found in a type IV secretion system. Causes liver disease. This genus consists of organisms that colonize the mucosal layer of the gastrointestinal tract or are found enterohepatically (in the liver). This species was associated with an increase in liver tumors. It can cause active chronic hepatitis and typhlitis (inflammation of a region at the beginning of the large intestine), hepatocellular tumors, and gastric bowel disease in various mice strains.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010125:955863 Gluconacetobacter diazotrophicus PAl 5, complete genome

Lineage: Gluconacetobacter diazotrophicus; Gluconacetobacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Gluconacetobacter diazotrophicus strain PAL5 (ATCC 49037) was isolated from sugarcane roots in Brazil and will be used for comparative analysis. Nitrogen-fixing plant symbiont. This acid-tolerant organism is endophytic and colonizes internal plant tissues, establishing a symbiotic relationship with its host. This bacterium has been found in sugarcane, coffee, rice, tea, and other plants. The nitrogen-fixation systems of the bacterium provide the plant with essential nitrogenous compounds while the plant provides a protected environment for the bacterium to grow in. Nitrogen-fixation is important for sugarcane production, and this organism can fix nitrogen even in the presence of nitrate.