Pre_GI: SWBIT SVG BLASTN

Query: NC_004917:946550 Helicobacter hepaticus ATCC 51449, complete genome

Lineage: Helicobacter hepaticus; Helicobacter; Helicobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: This organism was found to be linked to an increasing incidence of liver tumors in mouse colonies at the National Cancer Institute in 1992. Normally it resides in the lower intestines, but it can cause chronic hepatitis. This organism has a similar urease gene cluster and cytolethal distending toxin as compared to Helicobacter pylori, but lacks other virulence factors such as the vacuolating cytotoxin and the cag pathogenicity island. However, it does contain a pathogenicity island that encodes proteins similar to those found in a type IV secretion system. Causes liver disease. This genus consists of organisms that colonize the mucosal layer of the gastrointestinal tract or are found enterohepatically (in the liver). This species was associated with an increase in liver tumors. It can cause active chronic hepatitis and typhlitis (inflammation of a region at the beginning of the large intestine), hepatocellular tumors, and gastric bowel disease in various mice strains.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_002950:1748582 Porphyromonas gingivalis W83, complete genome

Lineage: Porphyromonas gingivalis; Porphyromonas; Porphyromonadaceae; Bacteroidales; Bacteroidetes; Bacteria

General Information: This strain (also known as HG66) is virulent in a mouse model and has been extensively studied. It was originally isolated by H. Werner in the 1950s in Bonn, Germany, from an unknown human infection. Associated with severe and chronic periodontal disease. This organism is associated with severe and chronic periodontal (tissues surrounding and supporting the tooth) diseases. Progression of the disease is caused by colonization by this organism in an anaerobic environment in host tissues and severe progression results in loss of the tissues supporting the tooth and eventually loss of the tooth itself. The black pigmentation characteristic of this bacterium comes from iron acquisition that does not use the typical siderophore system of other bacteria but accumulates hemin.Peptides appear to be the predominant carbon and energy source of this organism, perhaps in keeping with its ability to destroy host tissue. Oxygen tolerance systems play a part in establishment of the organism in the oral cavity, including a superoxide dismutase. Pathogenic factors include extracellular adhesins that mediate interactions with other bacteria as well as the extracellular matrix, and a host of degradative enzymes that are responsible for tissue degradation and spread of the organism including the gingipains, which are trypsin-like cysteine proteases.