Pre_GI: SWBIT SVG BLASTN

Query: NC_004663:4977635 Bacteroides thetaiotaomicron VPI-5482, complete genome

Lineage: Bacteroides thetaiotaomicron; Bacteroides; Bacteroidaceae; Bacteroidales; Bacteroidetes; Bacteria

General Information: This is the type strain for this organism and was isolated from the feces of a healthy adult. Common gastrointestinal bacterium. This group of microbes constitute the most abundant members of the intestinal microflora of mammals. Typically they are symbionts, but they can become opportunistic pathogens in the peritoneal (intra-abdominal) cavity. Breakdown of complex plant polysaccharides such as cellulose and hemicellulose and host-derived polysaccharides such as mucopolysaccharides is aided by the many enzymes these organisms produce. Bacteroides thetaiotaomicron is one of the two major Bacteroidesspecies found in the intestine. This organism has been used in studies on gut microflora composition and succession.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011883:2031222 Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774,

Lineage: Desulfovibrio desulfuricans; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774 was isolated from the rumen of a sheep. D. desulfuricans reduces sulfate to sulfide found in soil, freshwater, saltwater and the intestinal tract of animals. This organism grows anaerobically and utilizes a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite, as well as others. The nitrate reduction pathway is not expressed while sulfate is available. Alternatively, the sulfate reduction pathway is constitutively expressed when the cells are growing with nitrate reduction. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making this organism of interest as bioremediator. Metal corrosion, a problem that is partly the result of the collective activity of this bacterium, results in billions of dollars in losses each year to the petroleum industry. This organism is responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products.