Query: NC_004603:3080614 Vibrio parahaemolyticus RIMD 2210633 chromosome I, complete
Lineage: Vibrio parahaemolyticus; Vibrio; Vibrionaceae; Vibrionales; Proteobacteria; Bacteria
General Information: This is a clinical strain isolated in 1996 in Osaka, Japan. It contains a type III secretion system which may enable colonization and penetration of the host intestinal epithelial layer, and possibly lead to septicemia. The genome contains multipe chromosomal rearrangements as compared to Vibrio cholerae. The organism also produces a hemolysin (thermostable direct hemolysin - TDH) that is particular to Vibrio parahaemolyticus. This genus is abundant in marine or freshwater environments such as estuaries, brackish ponds, or coastal areas; regions that provide an important reservoir for the organism in between outbreaks of the disease. Vibrio can affect shellfish, finfish, and other marine animals and a number of species are pathogenic for humans. This species causes food poisoning (gastroenteritis) in countries that have elevated levels of seafood consumption such as Japan.
Subject: NC_009089:87581 Clostridium difficile 630, complete genome
Lineage: Peptoclostridium difficile; Peptoclostridium; Peptostreptococcaceae; Clostridiales; Firmicutes; Bacteria
General Information: This strain is the epidemic type X variant that has been extensively studied in research and clinical laboratories. It produces both toxin A, and B. Causative agent of pseudomembranous colitis. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This species is now recognized as the major causative agent of pseudomembranous colitis (inflammation of the colon) and diarrhea that may occur following antibiotic treatment. This bacterium causes a wide spectrum of disease, ranging from mild, self-limiting diarrhea to serious diarrhea and, in some cases, complications such as pseudomembrane formation, toxic megacolon (dilation of the colon) and peritonitis, which often lead to lethality among patients. The bacteria produce high molecular mass polypeptide cytotoxins, A and B. Some strains produce only one of the toxins, others produce both. Toxin A causes inflammatory reaction involving hypersecretion of fluid and hemorrhagic necrosis through triggering cytokine release by neutrophils. Alteration of intestinal microbial balance with antibiotic therapy and increased exposure to the bacterium in a hospital setting allows C. difficile to colonize susceptible individuals. Moreover, it has been shown that subinhibitory concentrations of antibiotics promote increased toxin production by C. difficile.