Pre_GI: SWBIT SVG BLASTN

Query: NC_004547:138500 Erwinia carotovora subsp. atroseptica SCRI1043, complete genome

Lineage: Pectobacterium atrosepticum; Pectobacterium; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain (ATCC BAA-672) is a virulent blackleg isolated from the stem of a potato plant. Causative agent for blackleg and soft rot disease in potatoes. Formerly Erwinia, these organisms are plant-specific pathogens that invade the vascular systems of plants. Both Pectobacterium chrysanthemia and Pectobacterium carotovora cause soft-rot diseases of various plant hosts through degradation of the plant cell walls. Pectobacterium colonize the intercellular spaces of plant cells and deliver potent effector molecules (Avr - avirulence) through a type III secretion system (Hrp - hypersensitive response and pathogenicity). Avr proteins control host-bacterium interactions, including host range. Expression of the plant cell-wall-degrading enzymes is controlled through a quorum-sensing mechanism that quantifies the number of Pectobacterium bacteria through measurement of the concentration of small molecules (acyl homoserine lactones) produced by Pectobacterium. Pectobacterium atrosepticum is an environmentally widespread organism that causes blackleg and soft rot disease in potatoes. This organism produces pectolytic enzymes that destroy plant tissue and allow the bacteria to spread.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009997:415808 Shewanella baltica OS195, complete genome

Lineage: Shewanella baltica; Shewanella; Shewanellaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from the Baltic Sea. A psychrophilic bacterium. This genus includes species that inhabit a wide range of environments and are capable of utilizing a wide variety of electron acceptors during anaerobic respiration including some insoluble metal oxides while using very few carbon sources such as lactate or acetate. This group of organisms have been studied extensively for their electron transport systems. This species is differentiated from other Shewanella spp. based on its ability to grow at 4 degrees C but not at 37, production of N-acetyl-beta-glucosaminidase, lack of chymotrypsin, and ability to use a variety of complex carbon compounds as carbon and energy sources.