Pre_GI: SWBIT SVG BLASTN

Query: NC_004369:2968251 Corynebacterium efficiens YS-314, complete genome

Lineage: Corynebacterium efficiens; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This is the type strain of C. efficiens isolated by researchers of Ajinomoto food company from soils at Kanagawa, Japan in the late 1980's. The strain can grow and produce glutamate at temperatures above up to 45oC in contrast to C. glutamicum that is only efficient at around 30oC. This feature is very beneficial for industrial applications, because less heat removal is required in fermenters to be used for cultivation of these bacteria. Glutamate-producing bacterium. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is a recently proposed new species of the genus capable of producing significant quantities of glutamic acid (glutamate), an important enhancer of taste in the food industry. It is currently used commercially to produce glutamate and other amino acids and compounds.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_013890:808791 Dehalococcoides sp. GT chromosome, complete genome

Lineage: Dehalococcoides mccartyi; Dehalococcoides; Dehalococcoidaceae; Dehalococcoidales; Chloroflexi; Bacteria

General Information: Temp: Mesophile; Habitat: Fresh water, Groundwater. Dehalococcoides sp. GT was isolated from an chloroethene-contaminated aquifer. This strain can dechlorinate trichloroethene and vinyl chloride. This organism was isolated from environments contaminated with organic chlorinated chemicals such as tetrachloroethene (PCE) and trichloroethane (TCE), common contaminants in the anaerobic subsurface. There are at least 15 organisms from different metabolic groups, halorespirators, acetogens, methanogens and facultative anaerobes, that are able to metabolize PCE. Some of these organisms couple dehalogenation to energy conservation and utilize PCE as the only source of energy while others dehalogenate tetrachloroethene fortuitously. This non-methanogenic, non-acetogenic culture is able to grow with hydrogen as the electron donor, indicating that hydrogen/PCE serves as an electron donor/acceptor for energy conservation and growth. This organism can only grow anaerobically in the presence of hydrogen as an electron donor and chlorinated compounds as electron acceptors. Dehalococcoides ethenogenes is typically found at sites contaminated with chlorinated solvents, and have been independently isolated in dozens of sites across the USA.