Pre_GI: SWBIT SVG BLASTN

Query: NC_004344:257471 Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis,

Lineage: Wigglesworthia glossinidia; Wigglesworthia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis. As Wigglesworthia brevipalpis resides intracellularly, the resulting co-evolution with its host over millions of years has led to a drastic reduction in the bacterium's genome size, resulting in this its inability to survive outside the host. Tsetse fly endosymbiont. This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis, Glossina tachinoides, Glossina palpalis palpalis, and Glossina austeni. The tsetse fly is a vector for African trypanosomes, and is the main transmitter of deadly diseases in animals and humans in Africa. The fly feeds on a restricted diet, exclusively consisting of vertebrate blood, and lacks certain metabolic compounds needed for survival and reproduction. To complement this lack in nutrients, the tsetse fly relies mainly on the intracellular bacterial symbiont, Wigglesworthia glossinidia for its viability and fecundity.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004129:5204500 Pseudomonas fluorescens Pf-5, complete genome

Lineage: Pseudomonas protegens Pf-5; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain can suppress the diseases caused by Rhizoctonia solani and Pythium ultimum which affect cotton plants. The production of a number of antibiotics (pyrrolnitrin, pyoluteorin, and 2,4-diacetylphloroglucinol) as well as the production of siderophores (which may affect the ability of competing organisms to obtain environmental iron) by this strain can inhibit phytopathogen growth such as the above-mentioned fungi. The genome of this organism contains a number of genes, estimated at 5.7 % of the chromosome, that encode proteins that are involved in secondary metabolism. A large number of repeat elements (REP) are also found in the genome in greater numbers than in related Pseudomonas spp.