Pre_GI: SWBIT SVG BLASTN

Query: NC_004344:257471 Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis,

Lineage: Wigglesworthia glossinidia; Wigglesworthia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis. As Wigglesworthia brevipalpis resides intracellularly, the resulting co-evolution with its host over millions of years has led to a drastic reduction in the bacterium's genome size, resulting in this its inability to survive outside the host. Tsetse fly endosymbiont. This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis, Glossina tachinoides, Glossina palpalis palpalis, and Glossina austeni. The tsetse fly is a vector for African trypanosomes, and is the main transmitter of deadly diseases in animals and humans in Africa. The fly feeds on a restricted diet, exclusively consisting of vertebrate blood, and lacks certain metabolic compounds needed for survival and reproduction. To complement this lack in nutrients, the tsetse fly relies mainly on the intracellular bacterial symbiont, Wigglesworthia glossinidia for its viability and fecundity.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010424:214640 Candidatus Desulforudis audaxviator MP104C, complete genome

Lineage: Desulforudis audaxviator; Desulforudis; Peptococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: Its genome indicates a motile, sporulating, sulfate-reducing, chemoautotrophic thermophile that can fix its own nitrogen and carbon by using machinery shared with archaea. Candidatus Desulforudis audaxviator is a gram positive sulfate reducing bacteria identified in fracture water from a borehole at a depth of 2.8 km in a South African gold mine. Water from these boreholes is very old (low-biodiversity fracture water), suggesting that these bacteria have been isolated from the Earth's surface for as much as several million years.