Pre_GI: SWBIT SVG BLASTN

Query: NC_004193:950000 Oceanobacillus iheyensis HTE831, complete genome

Lineage: Oceanobacillus iheyensis; Oceanobacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This organism is extremely salt tolerant and alkaliphilic and has a number of hydrogen, sodium and potassium transporters to deal with these extreme environments. This organism was isolated from deep sea mud (1050 m) from the Iheya ridge near Okinawa, Japan in 1998.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004557:558500 Clostridium tetani E88, complete genome

Lineage: Clostridium tetani; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is a virulent nonsporulating variant of strain Massachusetts used in vaccine production. Causes tetanus. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This organism causes tetanus (lockjaw) in humans. At the tissue level, the bacterium then releases an exotoxin called tetanospasmin that causes certain nervous system irregularities by means of retrograde tramsmission through neurons to the brain. If nervous impulses cannot be checked by normal inhibitory mechanisms, it produces the generalized muscular spasms characteristic of tetanus.