Pre_GI: SWBIT SVG BLASTN

Query: NC_003997:5200805 Bacillus anthracis str. Ames, complete genome

Lineage: Bacillus anthracis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This well studied laboratory strain (Porton isolate) is not virulent due to the loss of the two plasmids, pXO1 and pXO2. Under starvation conditions this group of bacteria initiate a pathway that leads to endospore formation, a process that is thoroughly studied and is a model system for prokaryotic development and differentiation. Spores are highly resistant to heat, cold, dessication, radiation, and disinfectants, and enable the organism to persist in otherwise inhospitable environments. Under more inviting conditions the spores germinate to produce vegetative cells. This organism was the first to be shown to cause disease by Dr. Louis Pasteur (the organism, isolated from sick animals, was grown in the laboratory and then used to infect healthy animals and make them sick). This organism was also the first for which an attenuated strain was developed as a vaccine. Herbivorous animals become infected with the organism when they ingest spores from the soil whereas humans become infected when they come into contact with a contaminated animal. PA/LF and PA/EF complexes are internalized by host cells where the LF (metalloprotease) and EF (calmodulin-dependent adenylate cyclase) components act. At high levels LF induces cell death and release of the bacterium while EF increases host susceptibility to infection and promotes fluid accumulation in the cells.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014328:85290 Clostridium ljungdahlii ATCC 49587 chromosome, complete genome

Lineage: Clostridium ljungdahlii; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated from chicken yard waste and is studied for its ability to produce ethanol. This acetogenic species has the ability to convert carbon monoxide into ethanol. The yield of this process has been increased substantially in the laboratory by using a dual-fermentation system. A methanogenic conversion step has also been designed for utilizing some of the waste products generated during the synthetic process.