Pre_GI: SWBIT SVG BLASTN

Query: NC_003919:3396136 Xanthomonas axonopodis pv. citri str. 306, complete genome

Lineage: Xanthomonas citri; Xanthomonas; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: This organism is the causal agent of citrus canker, a bacterial infection originating from southeast Asia which now occurs worldwide. Primarily a pathogen of plants in the Citrus genus, the disease is sometimes also found in other members of the Rutaceae. The bacterium survives in leaf, shoot and fruit lesions that develop during the spring, and which also cause secondary infections. During warm, wet weather in spring and early summer, the bacterium oozes out of overwintering lesions and infects new growth via the stomal pores or wounds. The bacterium may also survive for various periods of time in the soil or associated with other hosts.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007005:5367454 Pseudomonas syringae pv. syringae B728a, complete genome

Lineage: Pseudomonas syringae; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is the causal agent of brown spot disease on beans. It was isolated from a snap bean leaflet in Wisconsin, USA. Plant pathogen. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This species includes many plant pathogens of important crops, which makes it a model organism in plant pathology. Its natural environment is on the surface of plant leaves and it can withstand various stressful conditions, like rain, wind, UV radiation and drought. It can colonize plants in a non-pathogenic state and can rapidly take advantage of changing environmental conditions to induce disease in susceptible plants by shifting gene expression patterns.