Pre_GI: SWBIT SVG BLASTN

Query: NC_003454:249304 Fusobacterium nucleatum subsp. nucleatum ATCC 25586, complete

Lineage: Fusobacterium nucleatum; Fusobacterium; Fusobacteriaceae; Fusobacteriales; Fusobacteria; Bacteria

General Information: Normal oral and gastrointestinal bacterium. This genus contains mostly obligately anaerobic bacilli. Many of the isolates are spindle-shaped, or fusiform. This organism belongs to the normal microflora of the human oral and gastrointestinal tracts. It is a very long and slender spindle-shaped bacillus with sharply pointed ends that is characterized by the ability to invade soft tissues. It acts as a bridge between early and late colonizers of the tooth surface, and exerts synergism with other bacteria in mixed infections. It is most frequently associated with periodontal diseases, as well as with some invasive human infections of the head and neck, chest, lung, liver and abdomen, and some anginas. One of the major amino acid and sugar fermentation pathways in Fusobacterium nucleatum produces butyric and acetic acids.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004578:6089958 Pseudomonas syringae pv. tomato str. DC3000, complete genome

Lineage: Pseudomonas syringae group genomosp. 3; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: While pathogenic on Arabidopsis thaliana, it is mainly characterized as causing bacterial speck disease on tomato plants, which has a large economic impact. This organism is mainly endophytic and is a poor colonizes of plant surfaces but can multiply within the host. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This species includes many plant pathogens of important crops, which makes it a model organism in plant pathology. Its natural environment is on the surface of plant leaves and it can withstand various stressful conditions, like rain, wind, UV radiation and drought. It can colonize plants in a non-pathogenic state and can rapidly take advantage of changing environmental conditions to induce disease in susceptible plants by shifting gene expression patterns.