Pre_GI: SWBIT SVG BLASTN

Query: NC_003454:249304 Fusobacterium nucleatum subsp. nucleatum ATCC 25586, complete

Lineage: Fusobacterium nucleatum; Fusobacterium; Fusobacteriaceae; Fusobacteriales; Fusobacteria; Bacteria

General Information: Normal oral and gastrointestinal bacterium. This genus contains mostly obligately anaerobic bacilli. Many of the isolates are spindle-shaped, or fusiform. This organism belongs to the normal microflora of the human oral and gastrointestinal tracts. It is a very long and slender spindle-shaped bacillus with sharply pointed ends that is characterized by the ability to invade soft tissues. It acts as a bridge between early and late colonizers of the tooth surface, and exerts synergism with other bacteria in mixed infections. It is most frequently associated with periodontal diseases, as well as with some invasive human infections of the head and neck, chest, lung, liver and abdomen, and some anginas. One of the major amino acid and sugar fermentation pathways in Fusobacterium nucleatum produces butyric and acetic acids.

No Graph yet!

Subject: NC_015957:3067919 Streptomyces violaceusniger Tu 4113 chromosome, complete genome

Lineage: Streptomyces violaceusniger; Streptomyces; Streptomycetaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Environment: Soil, Terrestrial; Temp: Mesophile. Streptomyces violaceusniger 16S rRNA gene clade form a gray aerial spore mass and a grayish-yellow substrate mycelium on oatmeal agar, and produce aerial hyphae that differentiate into spiral chains of rugose ornamented spores. The characteristic earthy smell of freshly plowed soil is actually attributed to the aromatic terpenoid geosmin produced by species of Streptomyces. There are currently 364 known species of this genus, many of which are the most important industrial producers of antibiotics and other secondary metabolites of antibacterial, antifungal, antiviral, and antitumor nature, as well as immunosuppressants, antihypercholesterolemics, etc. Streptomycetes are crucial in the soil environment because their diverse metabolism allows them to degrade the insoluble remains of other organisms, including recalcitrant compounds such as lignocelluloses and chitin.