Pre_GI: SWBIT SVG BLASTN

Query: NC_003384:109036 Salmonella enterica subsp. enterica serovar Typhi str. CT18 plasmid

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is a multidrug resistant strain of Salmonella typhi. This serovar is a human-specific organism that causes the life-threatening illness Typhoid fever which is acquired by coming into contact with contaminated food or water. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012483:1408500 Acidobacterium capsulatum ATCC 51196, complete genome

Lineage: Acidobacterium capsulatum; Acidobacterium; Acidobacteriaceae; Acidobacteriales; Acidobacteria; Bacteria

General Information: Isolated from acidic mine drainage in Yanahara mine, Okayama, Japan. Acidophilic bacterium. This genus comprises a number of species commonly found in water reservoirs, microbial mats, many different soil types, marine and freshwater sediments, as well as in hot-spring mats and sediments, etc. Furthermore, they sometimes form the dominant group in a habitat. These bacteria are involved in the first step of destruction of biologically complex molecules produced by autotrophic (capable of synthesizing their own nutrients) microorganisms. Acidobacterium capsulatum is an aerobic, mesophilic, chemo-organotroph able to use a variety of carbon sources and to grow up to pH 6.0. The species comprises several strains characterized by orange pigmentation, production of menoquinones as their sole quinones, and branched-chain iso fatty acids as their cell envelope components.