Pre_GI: SWBIT SVG BLASTN

Query: NC_003366:2788268 Clostridium perfringens str. 13, complete genome

Lineage: Clostridium perfringens; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is a type A isolate from the soil. It can establish gas gangrene in a murine experimental model. Causative agent of gas gangrene. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism is a causative agent of a wide spectrum of necrotic enterotoxicoses. It also causes such animal diseases as lamb dysentery, ovine enterotoxemia (struck), pulpy kidney disease in lambs and other enterotoxemias in lambs and calves. It is commonly found in the environment (soil, sewage) and in the animal and human gastrointestinal tract as a member of the normal microflora. It is a fast growing (generation time 8-10 min) anaerobic flesh-eater. Active fermentative growth is accompanied by profuse generation of molecular hydrogen and carbon dioxide. It is also oxygen tolerant which makes it an easy object to work with in laboratories. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. All types produce the alpha toxin (phospholipase C). Type A strains that cause gas gangrene produce alpha toxin, theta (hemolysin), kappa (collagenase), mu (hyaluronidase), nu (DNAse) and neuraminidase which are all the enzymatic factors aiding the bacterium in invading and destruction of the host tissues. Type C strains produce alpha toxin, beta toxin and prefringolysin enteritis. In addition to alpha toxin, Type B strains produce beta toxin, types B and D produce the pore forming epsilon toxin and type E strains produce iota toxin.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009925:4997000 Acaryochloris marina MBIC11017, complete genome

Lineage: Acaryochloris marina; Acaryochloris; ; Chroococcales; Cyanobacteria; Bacteria

General Information: Acaryochloris marina MBIC11017 was isolated from algae from the coast of the Palau Islands in the western Pacific. Marine cyanobacterium. Acaryochloris marina was first isolated as an epiphyte of algae. M. marina been isolated from a variety of habitats and locations, usually associated with algae but also as free-living organisms. This cyanobacterium produces an atypical photosynthetic pigment, chlorophyll d, as the major reactive agent. The oxygenic photosynthesis based on this pigment may have evolved as an acclimatization to far-red light environments, or an as intermediate between the red-absorbing oxygenic and the far-red-absorbing anoxygenic photosynthesis that uses bacteriochlorophylls. Because of the unusual ratio of chlorophyll a to chlorophyll d in this organism, it has been used as a model to study the spectrographic characteristics of the two pigments.