Pre_GI: SWBIT SVG BLASTN

Query: NC_003361:803713 Chlamydophila caviae GPIC, complete genome

Lineage: Chlamydophila caviae; Chlamydophila; Chlamydiaceae; Chlamydiales; Chlamydiae; Bacteria

General Information: Causes conjunctivitis in guinea pigs. Bacteria belonging to the Chlamydiales group are obligate intracellular parasites of eukaryotic cells. They are found within vertebrates, invertebrate cells, and amoebae hosts. Chlamydiae are one of the commonest causes of sexually transmitted diseases (STDs) and if left untreated may cause infertility in women. They are transmitted by direct contact or aerosols, and can cause various diseases, while also being able to coexist with the host in an apparently asymptomatic state. Chlamydophila caviae is the model organism for the study of Chlamydia infections in animals.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003116:93576 Neisseria meningitidis Z2491, complete genome

Lineage: Neisseria meningitidis; Neisseria; Neisseriaceae; Neisseriales; Proteobacteria; Bacteria

General Information: This is a serogroup A strain isolated in Gambia in 1983. Causes septicemia and meningitis. The second of two pathogenic Neisseria, this organism causes septicemia and is the leading cause of life-threatening meningitis (inflammation of the meninges, the membrane surrounding the brain and spinal cord) in children. This organism typically residies in the nasopharynx cavity but can invade the respiratory epthelial barrier, cross into the bloodstream and the blood brain barrier, and cause inflammation of the meninges. Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). This organism, like Neisseria gonorrhoeae, is naturally competent, and protein complexes at the cell surface recognize the uptake signal sequence in extracellular DNA, an 8mer that is found at high frequency in Neisseria chromosomal DNA.