Pre_GI: SWBIT SVG BLASTN

Query: NC_003210:2721559 Listeria monocytogenes EGD-e, complete genome

Lineage: Listeria monocytogenes; Listeria; Listeriaceae; Bacillales; Firmicutes; Bacteria

General Information: This strain has numerous pathogenicity islands and genes as compared to the related non-pathogenic organism Listeria innocua. This organism, which causes listeriosis, is one of the leading causes of death from food-borne pathogens especially in pregnant women, newborns, the elderly, and immunocompromised individuals. It is found in environments such as decaying vegetable matter, sewage, water, and soil, and it can survive extremes of both temperatures (1-45 degrees C) and salt concentration marking it as an extremely dangerous food-born pathogen, especially on food that is not reheated. This organism is enteroinvasive, and utilizes an actin-based motility system by using a surface protein, ActA, that promotes actin polymerization, to spread intercellularly using the polymerized cytoskeletal protein as a "motor". There are 13 serovars associated with Listeria monocytogenes, and the serovar 4b strains are more commonly associated with invasive disease.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_020134:2832857 Clostridium stercorarium subsp. stercorarium DSM 8532, complete

Lineage: Clostridium stercorarium; Clostridium; unclassified Ruminococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: Lignocellulosic biomass has great potential as an abundant and renewable source of fermentable sugars through enzymic saccharification. Clostridium stercorarium is a catabolically versatile bacterium producing a wide range of hydrolases for degradation of biomass. Together with Clostridium thermocellum, Clostridium aldrichii and other cellulose degraders, it forms group I of the clostridia. It is moderately thermophilic, with an optimum growth temperature of 65 degrees C, and has repeatedly been isolated from self-heated compost. The two-component cellulase system of C. stercorarium has been investigated thoroughly. Due to its ability to utilize the various polysaccharides present in biomass it is especially suited for the fermentation of hemicellulose to organic solvents. Some isolates have been used in Japan in a single-step ethanol-fermenting pilot-process with lignocellulosic biomass as substrate.