Pre_GI: SWBIT SVG BLASTN

Query: NC_003116:93576 Neisseria meningitidis Z2491, complete genome

Lineage: Neisseria meningitidis; Neisseria; Neisseriaceae; Neisseriales; Proteobacteria; Bacteria

General Information: This is a serogroup A strain isolated in Gambia in 1983. Causes septicemia and meningitis. The second of two pathogenic Neisseria, this organism causes septicemia and is the leading cause of life-threatening meningitis (inflammation of the meninges, the membrane surrounding the brain and spinal cord) in children. This organism typically residies in the nasopharynx cavity but can invade the respiratory epthelial barrier, cross into the bloodstream and the blood brain barrier, and cause inflammation of the meninges. Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). This organism, like Neisseria gonorrhoeae, is naturally competent, and protein complexes at the cell surface recognize the uptake signal sequence in extracellular DNA, an 8mer that is found at high frequency in Neisseria chromosomal DNA.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004757:2213806 Nitrosomonas europaea ATCC 19718, complete genome

Lineage: Nitrosomonas europaea; Nitrosomonas; Nitrosomonadaceae; Nitrosomonadales; Proteobacteria; Bacteria

General Information: Ammonia-oxidizing bacterium. This organism is an obligate chemo-lithoautotroph as it only uses ammonia and carbon dioxide and mineral salts for growth, and is an important part of the global biogeochemical nitrogen cycle. It can derive all energy requirements from the oxidation of ammonia to nitrate, driving global nitrogen from the reduced insoluble form to the oxidized and potentially gaseous form (including NO and NO2 which are greenhouse gases). The energy derived from ammonia oxidation is in turn used to drive carbon fixation. This bacterium also provides plants with a readily available form of nitrogen, is important in wastewater treatment, and may be involved in bioremediation of sites contaminated with toxic compounds.