Pre_GI: SWBIT SVG BLASTN

Query: NC_003116:93576 Neisseria meningitidis Z2491, complete genome

Lineage: Neisseria meningitidis; Neisseria; Neisseriaceae; Neisseriales; Proteobacteria; Bacteria

General Information: This is a serogroup A strain isolated in Gambia in 1983. Causes septicemia and meningitis. The second of two pathogenic Neisseria, this organism causes septicemia and is the leading cause of life-threatening meningitis (inflammation of the meninges, the membrane surrounding the brain and spinal cord) in children. This organism typically residies in the nasopharynx cavity but can invade the respiratory epthelial barrier, cross into the bloodstream and the blood brain barrier, and cause inflammation of the meninges. Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). This organism, like Neisseria gonorrhoeae, is naturally competent, and protein complexes at the cell surface recognize the uptake signal sequence in extracellular DNA, an 8mer that is found at high frequency in Neisseria chromosomal DNA.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_002163:1607360 Campylobacter jejuni subsp. jejuni NCTC 11168, complete genome

Lineage: Campylobacter jejuni; Campylobacter; Campylobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: This strain (originally 5636/77) was isolated from a diarrheic patient in 1977 and minimally passaged. This organism is the leading cause of bacterial food poisoning (campylobacteriosis) in the world, and is more prevalent than Salmonella enteritis (salmonellosis). Found throughout nature, it can colonize the intestines of both mammals and birds, and transmission to humans occurs via contaminated food products. This organism can invade the epithelial layer by first attaching to epithelial cells, then penetrating through them. Systemic infections can also occur causing more severe illnesses.