Pre_GI: SWBIT SVG BLASTN

Query: NC_003103:266013 Rickettsia conorii str. Malish 7, complete genome

Lineage: Rickettsia conorii; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This strain was isolated from a human in South Africa. Causative agent for Rocky Mountain spotted fever. This genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, is composed of obligate intracellular pathogens. The latter is composed of two organisms, Rickettsia prowazekii and Rickettsia typhi. The bacteria are transmitted via an insect, usually a tick, to a host organism, in this case humans, where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Transovarial transmission (from mother to offspring) occurs in the invertebrate host. This organism causes Rocky Mountain spotted fever which can cause severe damage to the endothelial layer of major organs, including the lungs, heart, kidneys, and skeletal muscle which can result in death.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_002696:3759551 Caulobacter crescentus CB15, complete genome

Lineage: Caulobacter vibrioides; Caulobacter; Caulobacteraceae; Caulobacterales; Proteobacteria; Bacteria

General Information: Bacterium that undergoes asymmetric cell division and differentiation. Caulobacter vibroides, also known as Caulobacter crescentus, inhabits aquatic environments and plays an important part in biogeochemical cycling of organic nutrients. This bacterium undergoes an unusual developmental cycle in which a swarming motile cell becomes a stalked cell that is attached to a solid surface. The stalked cell then undergoes asymmetric cell division and produces one flagellated motile daughter cell and one stalked daughter cell. Thus, the asymmetric processes in this organism provide useful models for differentiation and development. This organism also contains a number of energy-dependent transport system, presumably enabling growth in the substrate-sparse aquatic environments that it lives in.