Pre_GI: SWBIT SVG BLASTN

Query: NC_002978:4973 Wolbachia endosymbiont of Drosophila melanogaster, complete genome

Lineage: Wolbachia endosymbiont of Drosophila melanogaster; Wolbachia; Anaplasmataceae; Rickettsiales; Proteobacteria; Bacteria

General Information: Wolbachia endosymbiont of Drosophila melanogaster. Fruitfly endosymbiont. This group of bacteria are associated with a variety of invertebrate species, some as pathogens, some in a symbiotic or other type of relationship. Typically these organisms are transmitted maternally from mother to daughter transovarially (through the egg) although these bacteria can affect their hosts reproductive capabilities in order to enhance transmission. The net outcome is the increase of hosts carrying the bacteria in the next generation, thereby increasing transmission. Wolbachia endosymbiont of Drosophila melanogaster is an obligate intracellular endosymbiont of the fruit fly Drosophila melanogaster.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009749:221311 Francisella tularensis subsp. holarctica FTA, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: Isolated from an immunocompetent 56-year old male with bacteremic pneumonia in France. Francisella tularensis is a non-motile, aerobic, rod-shaped Gram-negative bacterium and is the causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.