Pre_GI: SWBIT SVG BLASTN

Query: NC_002945:1856228 Mycobacterium bovis AF2122/97, complete genome

Lineage: Mycobacterium bovis; Mycobacterium; Mycobacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain is a fully virulent strain that was isolated in 1997 in the UK from a cow suffering necrotic lesions in lung and bronchomediastinal lymph nodes. The strain was also reported to infect and persist in badgers that are considered to be a significant source of bovine infection. Causative agent of classic bovine tuberculosis. This genus comprises a number of Gram-positive, acid-fast, rod-shaped aerobic bacteria and is the only member of the family Mycobacteriaceae within the order Actinomycetales. Like other closely related Actinomycetales, such as Nocardia and Corynebacterium, mycobacteria have unusually high genomic DNA GC content and are capable of producing mycolic acids as major components of their cell wall. This bacterium is the causative agent of classic bovine tuberculosis, but it can also cause the disease in humans, especially if contaminated milk is consumed without prior pasteurization. The Mycobacterium bovis complex is a diverse group of species, serovars and morphotypes that cause tuberculosis-like diseases in animals and humans. Pasteurization of milk is a major preventitive factor in transmission of bovine tuberculosis to humans. However, spreading the disease through milk and dairy products is still a concern in underdeveloped countries where pasteurization is not practiced.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003155:1137817 Streptomyces avermitilis MA-4680, complete genome

Lineage: Streptomyces avermitilis; Streptomyces; Streptomycetaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain (ATCC 31267) was isolated and characterized in 1978 by R. Burg and colleagues from a soil sample collected in Shizuoka Prefecture, Japan. Antibiotic-producing bacterium. The characteristic earthy smell of freshly plowed soil is actually attributed to the aromatic terpenoid geosmin produced by species of Streptomyces. There are currently 364 known species of this genus, many of which are the most important industrial producers of antibiotics and other secondary metabolites of antibacterial, antifungal, antiviral, and antitumor nature, as well as immunosuppressants, antihypercholesterolemics, etc. Streptomycetes are crucial in the soil environment because their diverse metabolism allows them to degrade the insoluble remains of other organisms, including recalcitrant compounds such as lignocelluloses and chitin. Streptomycetes produce both substrate and aerial mycelium. The latter shows characteristic modes of branching, and in the course of the streptomycete complex life cycle, these hyphae are partly transformed into chains of spores, which are often called conidia or arthrospores. An important feature in Streptomyces is the presence of type-I peptidoglycan in the cell walls that contains characteristic interpeptide glycine bridges. Another remarkable trait of streptomycetes is that they contain very large (~8 million base pairs which is about twice the size of most bacterial genomes) linear chromosomes with distinct telomeres. These rearrangements consist of the deletion of several hundred kilobases, often associated with the amplification of an adjacent sequence, and lead to metabolic diversity within the Streptomyces group. Sequencing of several strains of Streptomyces is aimed partly on understanding the mechanisms involved in these diversification processes. This organism is a well known producer of the anti-parasitic agent avermectin which is widely used to rid livestock of worm and insect infestations and to protect large numbers of people from river blindness in sub-Saharan Africa.