Pre_GI: SWBIT SVG BLASTN

Query: NC_002935:181902 Corynebacterium diphtheriae NCTC 13129, complete genome

Lineage: Corynebacterium diphtheriae; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain was isolated in 1997 from the pharyngeal membrane of a 72-year-old unimmunized UK female with clinical diphtheria acquired during a short Baltic cruise. Causative agent of diphtheria. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is the best known and most widely studied species of the genus. It is the causal agent of the disease diphtheria, a deadly infectious disease spreading from person to person by respiratory droplets from the throat through coughing and sneezing. In the course of infection, the bacteria invade and colonize tissues of the upper respiratory tract, proliferate and produce exotoxin that inhibits protein synthesis and causes local lesions and systemic degenerative changes in the heart, muscles, peripheral nerves, liver and other vital organs. In 1951, Victor Freeman discovered that pathogenic (toxigenic) strains. Moreover, later it was found that the gene for toxin production is located in the DNA of the B-type phage.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010424:14657 Candidatus Desulforudis audaxviator MP104C, complete genome

Lineage: Desulforudis audaxviator; Desulforudis; Peptococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: Its genome indicates a motile, sporulating, sulfate-reducing, chemoautotrophic thermophile that can fix its own nitrogen and carbon by using machinery shared with archaea. Candidatus Desulforudis audaxviator is a gram positive sulfate reducing bacteria identified in fracture water from a borehole at a depth of 2.8 km in a South African gold mine. Water from these boreholes is very old (low-biodiversity fracture water), suggesting that these bacteria have been isolated from the Earth's surface for as much as several million years.