Pre_GI: SWBIT SVG BLASTN

Query: NC_002607:1868371 Halobacterium sp. NRC-1, complete genome

Lineage: Halobacterium; Halobacterium; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: Chemoheterotrophic obligate extreme halophilic archeon. This microbe (strain ATCC 700922) is an obligately halophilic archeon that has adapted to growth under conditions of extremely high salinity. Motility is via tufts of polar flagella and intracellular gas vesicles are used for buoyancy. This organism grow aerobically and its ease of culturing combined with the availability of established methods of genetic manipulation in the laboratory make it an ideal model organism for study of the archaea.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_000917:1778173 Archaeoglobus fulgidus DSM 4304, complete genome

Lineage: Archaeoglobus fulgidus; Archaeoglobus; Archaeoglobaceae; Archaeoglobales; Euryarchaeota; Archaea

General Information: This is the type strain (DSM 4304) of the Archaeoglobales, and was isolated from a geothermally heated sea floor at Vulcano Island, Italy. Doubling time is four hours under optimal conditions. The organism is an autotrophic or organotrophic sulfate/sulfite respirer. An additional distinguishing characteristic is blue-green fluorescence at 420 nm. This bacterium is the first sulfur-metabolizing organism to have its genome sequence determined. Growth by sulfate reduction is restricted to relatively few groups of prokaryotes; all but one of these are Eubacteria, the exception being the archaeal sulfate reducers in the Archaeoglobales. These organisms are unique in that they are only distantly related to other bacterial sulfate reducers, and because they can grow at extremely high temperatures. The known Archaeoglobales are strict anaerobes, most of which are hyperthermophilic marine sulfate reducers found in hydrothermal environments. High-temperature sulfate reduction by Archaeoglobus species contributes to deep subsurface oil-well 'souring' by iron sulfide, which causes corrosion of iron and steel in oil-and gas-processing systems.