Pre_GI: SWBIT SVG BLASTN

Query: NC_002516:6255854 Pseudomonas aeruginosa PAO1, complete genome

Lineage: Pseudomonas aeruginosa; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is an opportunistic human pathogen. While it rarely infects healthy individuals, immunocompromised patients, like burn victims, AIDS-, cancer- or cystic fibrosis-patients are at increased risk for infection with this environmentally versatile bacteria. It is an important soil bacterium with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controlled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. The bacterium is naturally resistant to many antibiotics and disinfectants, which makes it a difficult pathogen to treat.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007498:3655304 Pelobacter carbinolicus DSM 2380, complete genome

Lineage: Pelobacter carbinolicus; Pelobacter; Pelobacteraceae; Desulfuromonadales; Proteobacteria; Bacteria

General Information: Pelobacter carbinolicus DSM 2380 was isolated from mud in Venice, Italy. Iron- and sulfur-reducing bacterium. Pelobacter carbinolicus is commonly isolated from marine and freshwater sediments, and sewage sludge. This organism can make up a significant portion of the anaerobic microbial community in these environments. Pelobacter carbinolicus is also able to grow using iron and sulfur as terminal electron acceptors. This organism is closely related to the sulfur-reducing Desulfuromonas spp. and iron-reducing Geobacter spp..