Pre_GI: SWBIT SVG BLASTN

Query: NC_002488:1812696 Xylella fastidiosa 9a5c, complete genome

Lineage: Xylella fastidiosa; Xylella; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: This strain was derived from a pathogenic strain (8.1b) isolated in 1992 in France that had come from infected twigs derived from the sweet orange strain Valencia in Brazil in the same year. This organism was first identified in 1993 as the causal agent of citrus variegated chlorosis, a disease that affects varieties of sweet oranges. Other strains of this species cause a range of diseases in mulberry, pear, almond, elm, sycamore, oak, maple, pecan and coffee which collectively result in multimillion dollar devastation of economically important plants. Xylella fastidiosa is similar to Xanthomonas campestris pv. campestris in that it produces a wide variety of pathogenic factors for colonization in a host-specific manner including a large number of fimbrial and afimbrial adhesins for attachment. It does not contain a type III secretion system, but possesses genes for a type II secretion system for export of exoenzymes that degrade the plant cell wall and allow the bacterium to colonize the plant xylem.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010501:2609567 Pseudomonas putida W619, complete genome

Lineage: Pseudomonas putida; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Pseudomonas putida is a common endophytic and rhizosphere bacterium. Pseudomonas putida W619 was isolated from the Black Cottonwood tree and is closely related to other endophytic and rhizosphere strains of Pseudomonas putida. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. As they are metabolically versatile, and well characterized, it makes them great candidates for biocatalysis, bioremediation and other agricultural applications. Certain strains have been used in the production of bioplastics.