Pre_GI: SWBIT SVG BLASTN

Query: NC_002488:1812696 Xylella fastidiosa 9a5c, complete genome

Lineage: Xylella fastidiosa; Xylella; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: This strain was derived from a pathogenic strain (8.1b) isolated in 1992 in France that had come from infected twigs derived from the sweet orange strain Valencia in Brazil in the same year. This organism was first identified in 1993 as the causal agent of citrus variegated chlorosis, a disease that affects varieties of sweet oranges. Other strains of this species cause a range of diseases in mulberry, pear, almond, elm, sycamore, oak, maple, pecan and coffee which collectively result in multimillion dollar devastation of economically important plants. Xylella fastidiosa is similar to Xanthomonas campestris pv. campestris in that it produces a wide variety of pathogenic factors for colonization in a host-specific manner including a large number of fimbrial and afimbrial adhesins for attachment. It does not contain a type III secretion system, but possesses genes for a type II secretion system for export of exoenzymes that degrade the plant cell wall and allow the bacterium to colonize the plant xylem.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004757:905417 Nitrosomonas europaea ATCC 19718, complete genome

Lineage: Nitrosomonas europaea; Nitrosomonas; Nitrosomonadaceae; Nitrosomonadales; Proteobacteria; Bacteria

General Information: Ammonia-oxidizing bacterium. This organism is an obligate chemo-lithoautotroph as it only uses ammonia and carbon dioxide and mineral salts for growth, and is an important part of the global biogeochemical nitrogen cycle. It can derive all energy requirements from the oxidation of ammonia to nitrate, driving global nitrogen from the reduced insoluble form to the oxidized and potentially gaseous form (including NO and NO2 which are greenhouse gases). The energy derived from ammonia oxidation is in turn used to drive carbon fixation. This bacterium also provides plants with a readily available form of nitrogen, is important in wastewater treatment, and may be involved in bioremediation of sites contaminated with toxic compounds.