Pre_GI: SWBIT SVG BLASTN

Query: NC_000963:141500 Rickettsia prowazekii str. Madrid E, complete genome

Lineage: Rickettsia prowazekii; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This strain is an egg-passaged attentuated avirulent strain that has been used as a live vaccine and was originally isolated from a typhus patient in Madrid. This species is the causal agent of typhus. The bacteria are transmitted via an insect, usually a tick, to a host organism, in this case humans, where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Transovarial transmission (from mother to offspring) occurs in the invertebrate host.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_020207:2575808 Enterococcus faecium NRRL B-2354, complete genome

Lineage: Enterococcus faecium; Enterococcus; Enterococcaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This genera consists of organisms typically found in the intestines of mammals, although through fecal contamination they can appear in sewage, soil, and water. They cause a number of infections that are becoming increasingly a problem due to the number of antibiotic resistance mechanisms these organisms have picked up. Both Enterococcus faecalis and Enterococcus faecium cause similar diseases in humans, and are mainly distinguished by their metabolic capabilities. This opportunistic pathogen causes a range of infections similar to those observed with Enterococcus faecalis, including urinary tract infections, bacteremia (bacteria in the blood), and infective endocarditis (inflammation of the membrane surrounding the heart). Hospital-acquired infections from this organism are on the rise due to the emergence of antiobiotic resistance strains and has led to the rise of vancomycin-resistant Staphylococcus aureus strains due to the horizontal transfer of Enterococcus antibiotic resistance genes. Little is known about the virulence mechanisms in this organism, but the genome does encode an esp gene for the surface adhesin. Vancomycin resistant isolates are more typically Enterococcus faecium than Enterococcus faecalis.