Pre_GI: SWBIT SVG BLASTN

Query: NC_000917:1778173 Archaeoglobus fulgidus DSM 4304, complete genome

Lineage: Archaeoglobus fulgidus; Archaeoglobus; Archaeoglobaceae; Archaeoglobales; Euryarchaeota; Archaea

General Information: This is the type strain (DSM 4304) of the Archaeoglobales, and was isolated from a geothermally heated sea floor at Vulcano Island, Italy. Doubling time is four hours under optimal conditions. The organism is an autotrophic or organotrophic sulfate/sulfite respirer. An additional distinguishing characteristic is blue-green fluorescence at 420 nm. This bacterium is the first sulfur-metabolizing organism to have its genome sequence determined. Growth by sulfate reduction is restricted to relatively few groups of prokaryotes; all but one of these are Eubacteria, the exception being the archaeal sulfate reducers in the Archaeoglobales. These organisms are unique in that they are only distantly related to other bacterial sulfate reducers, and because they can grow at extremely high temperatures. The known Archaeoglobales are strict anaerobes, most of which are hyperthermophilic marine sulfate reducers found in hydrothermal environments. High-temperature sulfate reduction by Archaeoglobus species contributes to deep subsurface oil-well 'souring' by iron sulfide, which causes corrosion of iron and steel in oil-and gas-processing systems.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007618:1593886 Brucella melitensis biovar Abortus 2308 chromosome I, complete

Lineage: Brucella abortus; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This strain is a standard laboratory strain. It is virulent for humans and cattle. Causes bovine brucellosis. They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism was first noticed on the island of Malta. It is the primary cause of bovine brucellosis, which results in enormous (billions of dollars) economic losses due primarily to reproductive failure and food losses. In man, it causes undulant fever, a long debilitating disease that is treated by protracted administration of antibiotics.