Some Help

Query: NC_009089:1093832:1109618 Clostridium difficile 630, complete genome

Start: 1109618, End: 1110106, Length: 489

Host Lineage: Peptoclostridium difficile; Peptoclostridium; Peptostreptococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is the epidemic type X variant that has been extensively studied in research and clinical laboratories. It produces both toxin A, and B. Causative agent of pseudomembranous colitis. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This species is now recognized as the major causative agent of pseudomembranous colitis (inflammation of the colon) and diarrhea that may occur following antibiotic treatment. This bacterium causes a wide spectrum of disease, ranging from mild, self-limiting diarrhea to serious diarrhea and, in some cases, complications such as pseudomembrane formation, toxic megacolon (dilation of the colon) and peritonitis, which often lead to lethality among patients. The bacteria produce high molecular mass polypeptide cytotoxins, A and B. Some strains produce only one of the toxins, others produce both. Toxin A causes inflammatory reaction involving hypersecretion of fluid and hemorrhagic necrosis through triggering cytokine release by neutrophils. Alteration of intestinal microbial balance with antibiotic therapy and increased exposure to the bacterium in a hospital setting allows C. difficile to colonize susceptible individuals. Moreover, it has been shown that subinhibitory concentrations of antibiotics promote increased toxin production by C. difficile.

Search Results with any or all of these Fields

Host Accession, e.g. NC_0123..Host Description, e.g. Clostri...
Host Lineage, e.g. archae, Proteo, Firmi...
Host Information, e.g. soil, Thermo, Russia

SubjectStartEndLengthSubject Host DescriptionCDS descriptionE-valueBit score
NC_021182:4367736:437385243738524374295444Clostridium pasteurianum BC1, complete genomeDNA-directed RNA polymerase specialized sigma subunit8e-1476.3
NC_021182:3347076:336750933675093367952444Clostridium pasteurianum BC1, complete genomehypothetical protein6e-1166.6
NC_004557:1141558:115059311505931151060468Clostridium tetani E88, complete genomehypothetical protein9e-1579.3
NC_014393:4323368:432463643246364325088453Clostridium cellulovorans 743B chromosome, complete genomehypothetical protein6e-0856.6
NC_010516:2328288:233173123317312332210480Clostridium botulinum B1 str. Okra, complete genomepossible sigma factor5e-0753.9
NC_008261:1787345:180992018099201810381462Clostridium perfringens ATCC 13124, complete genomeputative DNA-binding protein5e-0857
NC_015425:1295261:130716513071651307593429Clostridium botulinum BKT015925 chromosome, complete genomeputative sigma factor3e-0754.7